问题 解答题

某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.

(1)请问工厂有哪几种生产方案?

(2)选择哪种方案可获利最大,最大利润是多少?

答案

(1)设生产A产品x件,生产B产品(50-x)件,则

7x+3(50-x)≤280
3x+5(50-x)≤190

解得30≤x≤32.5

∵x为正整数

∴x可取30,31,32.

当x=30时,50-x=20,

当x=31时,50-x=19,

当x=32时,50-x=18,

所以工厂可有三种生产方案,分别为

方案一:生产A产品30件,生产B产品20件;

方案二:生产A产品31件,生产B产品19件;

方案三:生产A产品32件,生产B产品18件;

(2)法一:方案一的利润为30×400+20×350=19000元;

方案二的利润为31×400+19×350=19050元;

方案三的利润为32×400+18×350=19100元.

因此选择方案三可获利最多,最大利润为19100元.

法二:设生产A产品x件,生产B产品(50-x)件,可获利共y元,

∴y=400x+350(50-x)=50x+17500,

∵此函数y随x的增大而增大,

∴当x=32时,可获利最多,最大利润为19100元.

名词解释
单项选择题