问题
填空题
若圆x2+y2=r2(r>0)与圆(x+3)2+(y-4)2=36相交,则r的取值范围是______.
答案
这两个圆的圆心分别为(0,0)、(-3,4),半径分别为r和6.
若这两个圆相交,则两圆的圆心距大于两圆的半径之差而小于两圆的半径之和,即|r-6|<5<r+6,
解得 1<r<11,
故答案为 (1,11).
若圆x2+y2=r2(r>0)与圆(x+3)2+(y-4)2=36相交,则r的取值范围是______.
这两个圆的圆心分别为(0,0)、(-3,4),半径分别为r和6.
若这两个圆相交,则两圆的圆心距大于两圆的半径之差而小于两圆的半径之和,即|r-6|<5<r+6,
解得 1<r<11,
故答案为 (1,11).