问题
填空题
函数f(x)的定义域为(a,b),且对其内任意实数x1,x2均有:
|
答案
当x1>x2时,x1-x2>0,
则f(x1)-f(x2)<0,
即(x1)>f(x2);
当 x1<x2时,x1-x2<0,
则f(x1)-f(x2)>0,
即f(x1)>f(x2).
即可判断f(x)在(a,b)上是减函数,
故本题的答案是减函数.
函数f(x)的定义域为(a,b),且对其内任意实数x1,x2均有:
|
当x1>x2时,x1-x2>0,
则f(x1)-f(x2)<0,
即(x1)>f(x2);
当 x1<x2时,x1-x2<0,
则f(x1)-f(x2)>0,
即f(x1)>f(x2).
即可判断f(x)在(a,b)上是减函数,
故本题的答案是减函数.
从下面的方框中选出适当的句子补全对话 | |
A: Excuse me! Are you new here? B: Yes, I am. A: 1 . B: My name is Angela. A: I'm Cindy. Nice to meet you. B: 2 ,too. A: Angela, 3 . She's English . B: 4 . C: How do you do? A: Oh it's late and I must go home . B: 5
|