问题
解答题
已知函数f(x)=(2x-2-x)m+(x3+x)n+x2-1(x∈R)
(1)求证:函数g(x)=f(x)-x2+1是奇函数;
(2)若f(2)=8,求f(-2)的值.
答案
(1)证明:由题意知,g(x)=f(x)-x2+1=(2x-2-x)m+(x3+x)n,x∈R
设-x∈R,则g(-x)=(2-x-2x)m+(-x3-x)n=-(2x-2-x)m-(x3+x)n
∴g(-x)=-g(x),
∴函数g(x)是奇函数.
(2)令x=2和x=-2分别代入g(x)=f(x)-x2+1,
∴g(2)=f(2)-4+1 ①,g(-2)=f(-2)-4+1 ②,
由(1)得,g(x)=f(x)-x2+1是奇函数,则g(2)=-g(-2),
又∵f(2)=8,∴①+②得,f(-2)=-2.