问题 解答题
已知定义在区间(0,+∞)上的函数f(x)满足f(
x1
x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
①求f(1)的值;
②判断f(x)的单调性;
③若f(3)=-1,解不等式f(|x|)<-2.
答案

解 ①由f(

x1
x2
)=f(x1)-f(x2),令x1=x2,则f(1)=0;

②设x1>x2>0,则f(x1)-f(x2)=f(

x1
x2
),

因为

x1
x2
>1,所以f(
x1
x2
)<0,

所以f(x1)-f(x2)<0,即f(x1)<f(x2),

所以f(x)在(0,+∞)上为单调减函数;

③因为f(3)=-1,又f(

9
3
)=f(9)-f(3),即f(9)=2f(3)=-2,

所以f(|x|)<-2,可化为f(|x|)<f(9),

又f(x)为(0,+∞)上的单调减函数,

所以|x|>9,解得x<-9或x>9,

所以f(|x|)<-2的解集为(-∞,9)∪(9,+∞).

单项选择题 A1型题
单项选择题