问题
选择题
f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'(x)<0且f(-1)=0则不等式f(x)g(x)<0的解集为( )
|
答案
解:设h(x)=f(x)g(x),
因为当x<0时,f'(x)g(x)+f(x)g'(x)<0,
所以当x<0时,h′(x)<0,
所以函数y=h(x)在(-∞,0)单调递减,
又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,
所以函数y=h(x)为R上的奇函数,
所以函数y=h(x)在(0,+∞)单调递减,
因为f(-1)=0,
所以函数y=h(x)的大致图象如下:
所以等式f(x)g(x)<0的解集为(-1,0)∪(1,+∞)
故选A.