问题
选择题
在实数运算中,定义新运算“⊕”如下:当a≥b时,a⊕b=a; 当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)+(2⊕x)(其中x∈[-2,3])的最大值是( )(“+”仍为通常的加法)
A.3
B.8
C.9
D.18
答案
依题意,当-2≤x≤1时,f(x)=(1⊕x)+(2⊕x)=1-2=-1,此时f(x)=-1
当1<x≤2时,f(x)=(1⊕x)+(2⊕x)=x2-2,此时f(x)在(1,2]上为增函数,f(x)≤f(2)=2>-1
当2<x≤3时,f(x)=(1⊕x)+(2⊕x)=x2+x2=2x2,此时f(x)在(2,3]上为增函数,f(x)≤f(3)=18>2
∴函数f(x)=(1*x)-(2*x)(x∈[-2,3]的最大值为f(3)=18
故选D