问题
解答题
判断函数y=x+
|
答案
设0<x1<x2,
则 y1-y2
=(x1+
)-(x2+4 x1
)4 x2
=(x1-x2)+(
-4 x1
)4 x2
=(x1-x2)+[
]4(x2-x1) x1x2
=(x1-x2)[1-(
)]4 x1x2
(1)假如0<x1<x2<2,则 0<x1x2<4,
>1,1-4 x1x2
<0,4 x1x2
x1-x2<0,
所以,y1-y2>0,y1>y2,函数单调递减
(2)假如2<x1<x2,则 x1x2>4,
<1,1-4 x1x2
>0,4 x1x2
又x1-x2<0,
所以,y1-y2<0,y1<y2,函数单调递增
所以函数在(0,2)内单调递减;在[2,+∞)内单调递增.