在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC,
(Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.
解:(Ⅰ)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc,
由余弦定理得a2=b2+c2-2bccosA,
故。
(Ⅱ)由(Ⅰ)得:,
故当B=30°时,sinB+sinC取得最大值1。
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC,
(Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.
解:(Ⅰ)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc,
由余弦定理得a2=b2+c2-2bccosA,
故。
(Ⅱ)由(Ⅰ)得:,
故当B=30°时,sinB+sinC取得最大值1。