问题
解答题
已知二次函数y=f(x)的定义域为R,f(1)=2,在x=t处取得最值,若y=g(x)为一次函数,且f(x)+g(x)=x2+2x-3.
(1)求f(x)的解析式;
(2)若x∈[-1,2]时,f(x)≥-1恒成立,求t的取值范围.
答案
(1)设f(x)=a(x-t)2+b,
∵f(1)=2,∴a(1-t)2+b=2.
又f(x)+g(x)=x2+2x-3,g(x)为一次函数,
∴a=1,则b=2-(1-t)2,
∴f(x)=(x-t)2+2-(1-t)2=(x-t)2-t2+2t+1.
(2)①若t<-1时,
要使f(x)≥-1恒成立,只需f(-1)≥-1,
即t≥-
,这与t<-1矛盾;3 4
②-1≤t≤2时,要使f(x)≥-1恒成立,
只需f(t)≥-1,即-t2+2t+1≥-1,
即1-
≤t≤1+3
,∴1-3
≤t≤2;3
③若t>2时,要使f(x)≥-1恒成立,
只需f(2)≥-1,即t≤3,∴2<t≤3,
综上所述t的取值范围是[1-
,3].3