问题
填空题
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论: ①f(x1+x2)=f(x1)•f(x2); ②f(x1•x2)=f(x1)+f(x2); ③
④f(
当f(x)=lgx时,上述结论中正确结论的序号是______. |
答案
①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1•lgx2
②f(x1•x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2)
③f(x)=lgx在(0,+∞)单调递增,则对任意的0<x1<x2,d都有f(x1)<f(x2)
即
>0f(x1)-f(x2) x1-x2
④f(
)=lgx1+x2 2
,x1+x2 2
=f(x1)+f(x2) 2
=lgx1+lgx2 2 lgx1x2 2
∵
≥x1+x2 2
∴lgx1x2
≥lgx1+x2 2
=x1x2
lgx1x21 2
故答案为:②③