在△ABC中,已知a,b,c是角A,B,C的对应边,①若a>b,则f(x)=(sinA-sinB)•x在R上是增函数; ②若a2-b2=(acosB+bcosA)2,则△ABC是Rt△; ③cosC+sinC的最小值为-
|
①∵a>b,根据正弦定理得sinA>sinB,
∴f(x)=(sinA-sinB)•x在R上是增函数,故正确;
②∵a2-b2=(acosB+bcosA)2
∴a2-b2=(acosB+bcosA)2=a2cos2B+2abcosBcosA+b2cos2A,
整理得a2sin2B=2abcosBcosA+b2(1+cos2A),
即sin2Asin2B=2sinAsinBcosBcosA+sin2B(1+cos2A),
sinA(sinAsinB-cosBcosA)=sinB+cosA(sinAcosB+sinBcosA)
sinAcosC=sinB+cosAsinC,∴sin(A-C)=sin(A+C),
∴A-C+A+C=π,即A=
,故△ABC是Rt△;正确;π 2
③cosC+sinC=
sin(c+2
),π 4
∵0<C<π,∴
<C+π 4
<π 4 5π 4
∴cosC+sinC∈(- 1,
],故cosC+sinC的最小值为-2
;错;2
④∵cosA=cosB,且0<A、B<π,y=cosx在[0,π]上单调递减,
∴A=B;故正确;
⑤∵(1+tanA)(1+tanB)=2,
∴1+tanAtanB+tanB+tanA=2,即tan(A+B)(1-tanAtanB)+tanAtanB=1
∴tan(A+B)=1,∴A+B=kπ+
,故错;π 4
故①②④正确.
故答案为:①②④