问题
填空题
若f(x)=-
|
答案
由题意可知f′(x)=-x+
<0,b x+2
在x∈(-1,+∞)上恒成立,即b<x(x+2)在x∈(-1,+∞)上恒成立,
∵f(x)=x(x+2)=x2+2x且x∈(-1,+∞)
∴f(x)>-1
∴要使b<x(x+2),需b≤-1
故答案为b≤-1
若f(x)=-
|
由题意可知f′(x)=-x+
<0,b x+2
在x∈(-1,+∞)上恒成立,即b<x(x+2)在x∈(-1,+∞)上恒成立,
∵f(x)=x(x+2)=x2+2x且x∈(-1,+∞)
∴f(x)>-1
∴要使b<x(x+2),需b≤-1
故答案为b≤-1