问题
填空题
一个边长为12cm的正方形铁片,铁片的四角截去四个边长都为x的小正方形,然后做成一个无盖方盒,要使方盒的容积最大,x的值应为______.
答案
由题意,方盒的高xcm,长、宽都是(12-2x)cm
∴V=(12-2x)2×x=4(6-x)2×x
∵2x+(6-x)+(6-x)≥33 2x(6-x)2
∴(6-x)2×x≤32(当且仅当6-x=2x,即x=2时取等号)
∴x=2cm时,方盒的容积最大
故答案为:2cm