问题 单项选择题

设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有

A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解

B.(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解

C.(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解

D.(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解

答案

参考答案:A

解析:[分析] 若α是(Ⅰ)的解,即Anα=0,显然An+1α=A(Anα)=A0=0,即α必是(Ⅱ)的解,可排除(C)和(D)。
若η是(Ⅱ)的解,即An+1η=0,假若η不是(Ⅰ)的解,即Anη≠0,那么对于向量组η,Aη,A2η,…,Anη,一方面这是n+1个n维向量必线性相关;另一方面,若
kη+k1Aη+k2A2η+…+knAnη=0,
用An左乘上式,并把An+1η=0,An+2η=0,…,代入,得 kAnη=0,
由于Anη≠0,必有k=0,对
k1Aη+k2A2η+…+knAnη=0,
用An-1左乘上式可推知k1=0,
类似可知ki=0(i=2,3,…,n),于是向量组η,Aη,A2η,…,Anη线性无关,两者矛盾,所以必有Anη=0,即(Ⅱ)的解必是(Ⅰ)的解,由此可排除(B),故应选(A)。

写句子
判断题