问题
解答题
已知函数f(x)=logm
(1)判断函数f(x)的奇偶性; (2)证明:函数f(x)具有性质:f(x)+f(y)=f(
(3)若f(
|
答案
(1)由题意知,
>0,∴-1<x<1,定义域关于原点对称,1+x 1-x
f(-x)=
=-log
m1-x 1+x
=-f(x),∴f(x)是奇函数.log
m1+x 1-x
(2)∵f(x)+f(y)=
+log
m1+x 1-x
=log
m1+y 1-y
,log
m(1+x)(1+y) (1-x)(1-y)
f(
)=x+y 1+xy
=log
m1+ x+y 1+xy 1- x+y 1+xy
=log
m1+xy+x+y 1+xy-x-y
,log
m(1+x)(1+y) (1-x)(1-y)
∴f(x)+f(y)=f(
).x+y 1+xy
(3)∵f(
)=1,f(a+b 1+ab
)=2,∴f(a)+f(b)=1,a-b 1-ab
f(a)-f(b)=3,∴f(a)=2,f(b)=-1.