问题
填空题
已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为 ______.
答案
易知原函数在R上单调递增,且为奇函数,故f(mx-2)+f(x)<0⇒f(mx-2)<-f(x)=f(-x),此时应有mx-2<-x⇒xm+x-2<0,对所有m∈[-2,2]恒成立,令f(m)=xm+x-2,此时只需
即可,解之得-2<x<f(-2)<0 f(2)<0
.2 3
故答案为:(-2,
)2 3