问题 解答题
在△ABC中,a、b、c分别为内角A、B、C的对边,且b2+c2-a2=bc.
(1)求角A 的大小;
(2)设函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
,当f(B)=
2
+1
2
时,若a=
3
,求b的值.
答案

(Ⅰ)在△ABC中,由余弦定理知cosA=

b2+c2-a2
2bc
=
1
2

注意到在△ABC中,0<A<π,所以A=

π
3
为所求.

(Ⅱ)f(x)=sin

x
2
cos
x
2
+cos2
x
2
=
1
2
sinx+
1
2
cosx+
1
2
=
2
2
sin(x+
π
4
)+
1
2

f(B)=

2
2
sin(B+
π
4
)+
1
2
=
2
+1
2
,得sin(B+
π
4
)=1

注意到0<B<

2
3
π,
π
4
<B+
π
4
11π
12
,所以B=
π
4
,由正弦定理,b=
asinB
sinA
=
2

所以b=

2
为所求.

单项选择题
单项选择题