问题
填空题
设一次函数f(x)=ax+b,其中a,b为实数,f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f5(x)=32x+31,则f2008(-1)=______.
答案
因为f(x)=ax+b,fn+1(x)=f(fn(x)),所以f1(x)=f(x)=ax+b,f2(x)=f(f1(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b,
f(f3(x))=f(f2(x))=a[a(ax+b)+b]+b=a3x+a2b+ab+b,
同理f4(x)=f(f3(x))=a4x+a3b+a2b+ab+b,
则f5(x)=f(f4(x))=a5x+a4b+a3b+a2b+ab+b=32x+31,
即a5=32①,a4b+a3b+a2b+ab+b=31②,解得a=2,b=1,
所以f(x)=2x+1,则f1(-1)=-1,f2(-1)=-1,…fn(-1)=-1.
所以f2008(-1)=-1.
故答案为:-1.