若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,那么△ABC是______.
∵(a+b+c)(b+c-a)=3bc
∴[(b+c)+a][(b+c)-a]=3bc
∴(b+c)2-a2=3bc
b2+2bc+c2-a2=3bc
b2-bc+c2=a2
根据余弦定理有a2=b2+c2-2bccosA
∴b2-bc+c2=a2=b2+c2-2bccosA
bc=2bccosA
cosA=1 2
∴A=60°
又由sinA=2sinBcosC,
则
=2cosC,即sinA sinB
=2a b
,a2+b2-c2 2ab
化简可得,b2=c2,
即b=c,
∴△ABC是等边三角形
故答案为等边三角形.