问题
填空题
已知函数f(x)满足对任意的x∈R都有f(
|
答案
设f(
)+f(1 8
)+…+f(2 8
)=M…①7 8
所以f(
)+f(7 8
)+…+f(6 8
)=M…②1 8
①+②可得[f(
)+f(1 8
)]+[f(7 8
)+f(2 8
)]+…+[f(6 8
)+f(7 8
)]=2M1 8
因为函数f(x)满足对任意的x∈R都有f(
+x)+f(1 2
-x)=2成立1 2
所以14=2M即M=7
所以f(
)+f(1 8
)+…+f(2 8
)=77 8
故答案为:7.