问题 解答题
已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量
m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

(1)求角C的大小;
(2)若a2=b2+
1
2
c2
,试求sin(A-B)的值.
答案

(1)∵

m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

m
n
=(sinA+sinC)(sinA-sinC)+sinB(sinB-sinA)=0,

即sin2A-sin2C+sin2B-sinAsinB=0,

整理得:sin2C=sin2A+sin2B-sinAsinB,

由正弦定理得:c2=a2+b2-ab,即a2+b2-c2=ab,

再由余弦定理得:cosC=

a2+b2-c2
2ab
=
1
2

∵0<C<π,∴C=

π
3

(2)∵a2=b2+

1
2
c2

∴sin2A=sin2B+

1
2
sin2C,即sin2A-sin2B=
3
8

1-cos2A
2
-
1-cos2B
2
=
3
8
,即cos2B-cos2A=
3
4

∵A+B+C=π,即A+B=

3

∴cos(

3
-2A)-cos2A=
3
4
,即-cos(
π
3
-2A)-cos2A=
3
4

整理得:

1
2
cos2A+
3
2
sin2A+cos2A=-
3
4
,即
3
2
cos2A+
1
2
sin2A=-
3
4

∴sin(2A+

π
3
)=-
3
4

则sin(A-B)=sin[A-(

3
-A)]=sin(2A-
3
)=-sin(2A-
3
+π)=-sin(2A+
π
3
)=
3
4

单项选择题
多项选择题