问题
解答题
一个整数称为可被其数字和整除.如果:
(1)它的数字都不为0;
(2)它可以被它的数字和整除(例如322可被其数字和整除).
证明:有无限多个可被数字和整除的整数.
答案
证明:322可被其数字和整除,即322÷7=46
322×10÷7=46×10=460
322×102÷7=46×102=4.6×103;
依此类推:322×10n÷7=46×10n=4.6×10n+1
n是任意的整数,因而322×10n即3.22×10n+2都是可被数字和整除的整数.
故有无限多个可被数字和整除的整数.