问题 解答题
已知幂函数y=f(x)的图象过点(
2
2
2
)

(1)求函数f(x)的解析式;
(2)记g(x)=f(x)+x,判断g(x)在(1,+∞)上的单调性,并证明之.
答案

(1)由题意令y=f(x)=xa,由于图象过点(

2
2
2
),

2
2
=
2
a,a=-1

∴y=f(x)=x-1

(2)g(x)=f(x)+x=x+

1
x

函数g(x)=x+

1
x
在区间(1,+∞)上是增函数,

证明:任取x1、x2使得x1>x2>1,

都有 g(x1)-g(x2)=(x1+

1
x1
)-(x2+
1
x2
)=
(x1-x2)(x1x2-1)
x1x2

由x1>x2>1得,x1-x2>0,x1x2>0,x1x2-1>0,

于是g(x1)-g(x2)>0,即g(x1)>g(x2),

所以,函数g(x)=x+

1
x
在区间(1,+∞)上是增函数.

单项选择题
单项选择题