问题
解答题
已知:函数f(x)=ax2+2bx(a,b∈R+) (1)若a=b=1,求:不等式log2f(x)≤3; (2)若f(1)=1,求:
|
答案
(1)当a=b=1时,f(x)=x2+2x
则:log2f(x)≤3⇔log2(x2+2x)≤log28
⇔
⇒x2+2x>0 x2+2x≤8
⇒-4≤x<-2或0<x≤2;x<-2或x>0 -4≤x≤2
(2)当f(1)=1时,有a+2b=1
则:
+1 a
=1 b
+a+2b a
=3+a+2b b
+2b a a b
∵a,b∈R+,∴
+2b a
≥2a b 2
当且仅当
=2b a
,即:a=a b
b等号成立2
∴
+1 a
=3+1 b
+2b a
≥3+2a b 2
即:(
+1 a
)min=3+21 b
.2