问题
选择题
f(x)是定义域在(-2,2)上单调递减的奇函数,当f(2-a)+f(2a-3)<0时,a的取值范围是( )
|
答案
∵f(2-a)+f(2a-3)<0,∴f(2-a)<-f(2a-3),∵f(x)是奇函数,
∴f(2-a)<f(-2a+3),∵f(x)是定义域在(-2,2)上单调递减函数,
∴2-a>-2a+3 -2a+3>-2 2-a<2
∴a∈2-a>-2a+3
故选D
f(x)是定义域在(-2,2)上单调递减的奇函数,当f(2-a)+f(2a-3)<0时,a的取值范围是( )
|
∵f(2-a)+f(2a-3)<0,∴f(2-a)<-f(2a-3),∵f(x)是奇函数,
∴f(2-a)<f(-2a+3),∵f(x)是定义域在(-2,2)上单调递减函数,
∴2-a>-2a+3 -2a+3>-2 2-a<2
∴a∈2-a>-2a+3
故选D