问题
选择题
已知f(x)是偶函数,x∈R,若将f(x)的图象向右平移一个单位又得到一个奇函数,又f(2)=-1,则f(1)+f(2)+f(3)+…+f(2011)=( )
A.-1003
B.1003
C.1
D.-1
答案
∵函知f(x)是R上偶函数,∴f(-x)=f(x).
又将f(x)的图象向右平移一个单位又得到一个奇函数,∴f(-x-1)=-f(x-1).
∴f(x+1)=f(-x-1)=-f(x-1),
∴f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴函数f(x)是以4为周期的函数.
对于式子f(-x-1)=-f(x-1),令x=0,则f(-1)=-f(-1),
∴f(-1)=0=f(1),
∴f(3)=f(-1)=0,
又f(2)=-1,
∴f(4)=-f(3-1)=-f(2)=1,
∴f(1)+f(2)+f(3)+f(4)=0-1+0+1=0,
∴f(1)+f(2)+f(3)+…+f(2011)=f(2009)+f(2010)+f(2011)
=f(1)+f(2)+f(3)=0-1+0=-1.
故选D.