问题 解答题
设实数a≠0,函数f(x)=a(x2+1)-(2x+
1
a
)有最小值-1.
(1)求a的值;
(2)设数列{an}的前n项和Sn=f(n),令bn=
a2+a4+…+a2n
n
,证明:数列{bn}是等差数列.
答案

(1)∵f(x)=a(x-

1
a
2+a-
2
a
,由已知知f(
1
a
)=a-
2
a
=-1,且a>0,解得a=1,a=-2(舍去).

(2)证明:由(1)得f(x)=x2-2x,

∴Sn=n2-2n,a1=S1=-1.

当n≥2时,an=Sn-Sn-1=n2-2n-(n-1)2+2(n-1)=2n-3,a1满足上式即an=2n-3.

∵an+1-an=2(n+1)-3-2n+3=2,

∴数列{an}是首项为-1,公差为2的等差数列.

∴a2+a4+…+a2n=

n(a2+a2n)
2

=

n(1+4n-3)
2
=n(2n-1),

即bn=

n(2n-1)
n
=2n-1.

∴bn+1-bn=2(n+1)-1-2n+1=2.

又b2=

a2
1
=1,

∴{bn}是以1为首项,2为公差的等差数列.

选择题
选择题