问题
选择题
已知函数f(t)是奇函数且是R上的增函数,若x,y满足不等式f(x2-2x)≤-f(y2-2y),则x2+y2的最大值是( )
|
答案
∵f(x2-2x)≤-f(y2-2y),
∴f(x2-2x)≤f(-y2+2y),
∵f(x)是增函数
∴x2-2x≤-y2+2y,整理得(x-1)2+(y-1)2≤2
设点P的坐标为(x,y)则点P是以(1,1)为圆心,
2 |
则
x 2+y 2 |
∵圆过原点,
∴
x 2+y 2 |
2 |
∴x2+y2的最大值为8
故选C