在△ABC中,a,b,c分别表示三个内角A,B,C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形形状.
由正弦定理可知
=a sinA
=kb sinB
则a=ksinA,b=ksinB
代入(a2+b2)sin(A-B)=(a2-b2)sin(A+B),并把k约分
(sin2A+sin2B)sin(A-B)=(sin2A-sin2B)sin(A+B)
sin2Asin(A-B)+sin2Bsin(A-B)=sin2Asin(A+B)-sin2Bsin(A+B)
sin2A[sin(A+B)-sin(A-B)]=sin2B[sin(A-B)+sin(A+B)]
利用和角公式,整理有
sin2A2cosAsinB=sin2B2sinAcosB
sin2A2cosAsinB-sin2B2sinAcosB=0
sinAsinB(2sinAcosA-2sinBcosB)=0
sinAsinB(sin2A-sin2B)=0
sinA>0,sinB>0
所以sin2A=sin2B
2A=2B 或2A+2B=180度
A=B或A+B=90度
所以是等腰三角形或直角三角形