问题
选择题
设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是( )
|
答案
∵奇函数f(x)在[-1,1]上是增函数,f(-1)=-1
∴x=1时,函数有最大值f(1)=1
若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,
∴1≤t2-2at+1
∴2at-t2≤0,
设g(a)=2at-t2(-1≤a≤1),
欲使2at-t2≤0恒成立,则g(-1)≤0 g(1)≤0
∴-2t-t2≤0 2t-t2≤0
∴t≤-2或t=0或t≥2
故选C.