问题
解答题
已知向量
(Ⅰ)求f(x)的最大值,并求取最大值时x的取值集合; (Ⅱ)已知a、b、c分别为△ABC内角A、B、C的对边,且a,b,c成等比数列,角B为锐角,且f(B)=1,求
|
答案
(Ⅰ)f(x)=
m |
m |
n |
m |
n |
m |
=(sinx+
3 |
3 |
2 |
=sin2x+
3 |
1 |
2 |
1-cos2x |
2 |
| ||
2 |
1 |
2 |
=
| ||
2 |
1 |
2 |
π |
6 |
故f(x)max=1,此时2x-
π |
6 |
π |
2 |
π |
3 |
所以取得最大值的x的集合为{x|x=kπ+
π |
3 |
(Ⅱ)由f(B)=sin(2B-
π |
6 |
π |
2 |
π |
6 |
π |
6 |
5 |
6 |
∴2B-
π |
6 |
π |
2 |
π |
3 |
由a,b,c成等比数列,则b2=ac,∴sin2B=sinAsinC.
∴
1 |
tanA |
1 |
tanC |
cosA |
sinA |
cosC |
sinC |
sinCcosA+cosCsinA |
sinAsinC |
=
sin(A+C) |
sin2B |
1 |
sinB |
1 | ||||
|
2
| ||
3 |