问题
解答题
已知△ABC的两边长分别为AB=25,AC=39,且O为△ABC外接圆的圆心.(注:39=3×13,65=5×13) (1)若外接圆O的半径为
(2)求
|
答案
(1)由正弦定理有
=AB sinC
=2R(R为外接圆半径),AC sinB
∴
=25 sinC
=65,39 sinB
∴sinB=
,sinC=3 5
,又B为钝角,5 13
∴cosC=
,cosB=-12 13
,4 5
∴sin(B+C)=sinBcosC+cosBsinC=
×3 5
+12 13
×(-5 13
)=4 5
,16 65
又
=2R,∴BC=2RsinA=65sin(B+C)=16; BC sinA
(2)由已知得:
+AO
=OC
,∴(AC
+AO
)2=OC
2,AC
即|
|2+2AO
•AO
+|OC
|2=|OC
|2=392,AC
同理
+AO
=OB
,∴|AB
|2+2AO
•AO
+|OB
|2=|OB
|2=252,AB
两式相减得:2
•AO
-2OC
•AO
=(39+25)(39-25)=896,OB
即2
•AO
=896,BC
则
•AO
=448.BC