问题
选择题
△ABC的三内角A,B,C所对边的长分别为a,b,c,
|
答案
∵
=(a+b,c),m
=(b-a,c-b),n
⊥m
,n
∴(a+b)(b-a)+c(c-b)=0,
∴a2=b2+c2-bc,
由余弦定理知,a2=b2+c2-2bccosA,
∴cosA=
,而A为△ABC的内角,1 2
∴A=
.π 3
∵△ABC中,A+B+C=π,
∴B+C=π-A=
,2π 3
∴sinB+sinC
=sin(
-C)+sinC2π 3
=
cosC-(-3 2
)sinC+sinC1 2
=
sinC+3 2
cosC3 2
=
sin(C+3
).π 6
∵0<C<
,故2π 3
<C+π 6
<π 6
.5π 6
∴
<sin(C+1 2
)≤1.π 6
∴
<3 2
sin(C+3
)≤π 6
.即3
<sinB+sinC≤3 2
.3
故选B.