问题 解答题
(1)一个自然数N被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N的最小值是______.
(2)若1059、1417、2312分别被自然数x除时,所得的余数都是y,则x-y的值等于(  )
A.15    B.1    C.164    D.174
(3)设N=
11…1
1990个
,试问N被7除余几?并证明你的结论.
答案

(1)N+1为2~10的公倍数,要使N最小,取N+1为它的最小公倍数22×32×5×7=2520,故N的最小值为2520-1=2519,

(2)设已知三数被自然数x除时,商数分别为a、b、c,

ax+y=1059…①
bx+y=1417…②
cx+y=2312…③

②-①得:(b-a)x=358,③-②得(c-b)x=895,③-①得(c-a)x=1253,

由此x为358、895、1253的公约数,x=179,

1059÷179=5…164,

y=164,

x-y=179-164=15.

故选A.

(3)111111=7×15873,而1990=6×331+4,故只须考查1111被7除的余数,1111=7×158+5,故N被7除余5.

单项选择题
单项选择题