(1)一个自然数N被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N的最小值是______. (2)若1059、1417、2312分别被自然数x除时,所得的余数都是y,则x-y的值等于( ) A.15 B.1 C.164 D.174 (3)设N=
|
(1)N+1为2~10的公倍数,要使N最小,取N+1为它的最小公倍数22×32×5×7=2520,故N的最小值为2520-1=2519,
(2)设已知三数被自然数x除时,商数分别为a、b、c,ax+y=1059…① bx+y=1417…② cx+y=2312…③
②-①得:(b-a)x=358,③-②得(c-b)x=895,③-①得(c-a)x=1253,
由此x为358、895、1253的公约数,x=179,
1059÷179=5…164,
y=164,
x-y=179-164=15.
故选A.
(3)111111=7×15873,而1990=6×331+4,故只须考查1111被7除的余数,1111=7×158+5,故N被7除余5.