问题 解答题

先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

答案

(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.

∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是

5
a2+b2
=1

即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}

∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.

∴直线ax+by+c=0与圆x2+y2=1相切的概率是

2
36
=
1
18

(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.

∵三角形的一边长为5

∴当a=1时,b=5,(1,5,5)1种

当a=2时,b=5,(2,5,5)1种

当a=3时,b=3,5,(3,3,5),(3,5,5)2种

当a=4时,b=4,5,(4,4,5),(4,5,5)2种

当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),

(5,4,5),(5,5,5),(5,6,5)6种

当a=6时,b=5,6,(6,5,5),(6,6,5)2种

故满足条件的不同情况共有14种

故三条线段能围成不同的等腰三角形的概率为

14
36
=
7
18

选择题
单项选择题 B型题