问题
解答题
已知向量
(1)当
(2)在(1)的条件下,当a=
|
答案
(1)∵
=(2,-1),m
=(sinn
,cos(B+C)),A 2
∴
•m
=2sinn
-cos(B+C)=2sinA 2
+cosA=2sinA 2
+(1-2sin2A 2
)=-2(sinA 2
-A 2
)2+1 2
,3 2
∵0<A<π,∴0<
<A 2
,π 2
∴sin
=A 2
,即A=1 2
时,π 3
•m
取得最大值;n
(2)∵a=
,sinA=3
,3 2
∴由正弦定理
=a sinA
=b sinB
=c sinC
=2,3 3 2
∴b=2sinB,c=2sinC,
∵C=π-(A+B)=
-B,2π 3
∴b2+c2=4sin2B+4sin2C=4sin2B+4sin2(
-B)2π 3
=4[
+1-cos2B 2
]1-cos(
-2B)4π 3 2
=4(1-
)cos2B+cos
cos2B+sin4π 3
sin2B4π 3 2
=4+
sin2B-3 2
cos2B1 2
=4+2sin(2B-
),π 6
∵0<B<
,∴-2π 3
<2B-π 6
<π 6
,7π 6
∴-
<sin(2B-1 2
)≤1,π 6
∴3<b2+c2≤6,
则b2+c2的取值范围为(3,6].