问题 填空题
(坐标系与参数方程选做题)
在极坐标系中,已知点A(1,
π
2
),点P是曲线ρsin2θ=4cosθ上任意一点,设点P到直线ρcosθ+1=0的距离为d,则丨PA丨+d的最小值为______.
答案

点A(1,

π
2
)的直角坐标为A(0,1),

曲线曲线ρsin2θ=4cosθ的普通方程为y2=4x,是抛物线.
直线ρcosθ+1=0的直角坐标方程为x+1=0,是准线.
由抛物线定义,点P到抛物线准线的距离等于它到焦点A(0,1)的距离,
所以当A,P,F三点共线时,其和最小,
最小为|AF|=

2

故答案为:
2

单项选择题 A1型题
写作题