问题
解答题
已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上. (1)求数列{an}的通项公式; (2)若函数f(n)=
|
答案
(1)由点P(an,an+1)在直线x-y+1=0上,
即an+1-an=1,且a1=1,数列{an}是以1为首项,1为公差的等差数列,
an=1+(n+1)•1=n(n≥2),a1=1同样满足,
所以an=n.
(2)f(n)=
+1 n+1
++1 n+2
,f(n+1)=1 2n
+1 n+2
+1 n+3
+1 n+4
+1 2n+1
,f(n+1)-f(n)=1 2n+2
+1 2n+1
-1 2n+2
>1 n+1
+1 2n+2
-1 2n+2
=0.1 n+1
所以f(n)是单调递增,
故f(n)的最小值是f(2)=
.7 12