问题 填空题

设有一组圆Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四个命题:

①存在一条定直线与所有的圆均相切;

②存在一条定直线与所有的圆均相交;

③存在一条定直线与所有的圆均不相交;

④所有的圆均不经过原点.

其中真命题的代号是______(写出所有真命题的代号).

答案

根据题意得:圆心(k-1,3k),

圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;

考虑两圆的位置关系,

圆k:圆心(k-1,3k),半径为

2
k2

圆k+1:圆心(k-1+1,3(k+1)),即(k,3k+3),半径为

2
(k+1)2

两圆的圆心距d=

(k-k+1)2+(3k-3k-3)2
=
10

两圆的半径之差R-r=

2
(k+1)2-
2
k2=2
2
k+
2

任取k=1或2时,(R-r>d),Ck含于Ck+1之中,选项①错误;

若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;

将(0,0)带入圆的方程,则有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),

因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.

则真命题的代号是②④.

故答案为:②④

单项选择题
单项选择题 共用题干题