问题
填空题
一条光线从点A(-2,3)射出,经过x轴反射后,与圆C:x2+y2-6x-4y+12=0相切,则反射光线所在直线的方程为______.
答案
圆C:x2+y2-6x-4y+12=0的圆心坐标为(3,2),半径为1
点A关于x轴的对称点的坐标为(-2,-3),设反射光线为y+3=k(x+2),即kx-y+2k-3=0
∵光线从点A(-2,3)射出,经过x轴反射后,与圆C:x2+y2-6x-4y+12=0相切,
∴d=
=1|3k-2+2k-3| k2+1
∴k=
或4 3 3 4
∴反射光线所在直线的方程为4x-3y-1=0或3x-4y-6=0.
故答案为:4x-3y-1=0或3x-4y-6=0.