问题
解答题
已知△ABC的内角A、B、C所对的边分别为a、b、c,且cosB=
(I)若a=7,△ABC的面积S=
(II)若cosA=
|
答案
(I)∵sinB=
,5 3 14
S△ABC=
acsinB=1 2 15 3 2
∴
×7×c×1 2
=5 3 14
,15 3 2
∴c=6.
∴b=
=a2+c2-2accosB
=72+62-2×7×6× 11 14
.19
(II)sinA=
,sinB=3 3 14
,5 3 14
∴cosC=-
,sinC=1 2 3 2
由正弦定理
=|
|CB 3 3 14
=|
|CA 5 3 14
,得||
|AB 3 2
|=CA
,|5|
|AB 7
|=CB 3|
|AB 7
∵|
+CA
|=CB
,19
2+CA
2+2CB
•CA
=19CB
∴(
)2+(5|
|AB 7
)2-(3|
|AB 7
)(5|
|AB 7
)=19,3|
|AB 7
∴|
|=7AB