问题
选择题
△ABC的三个内角A、B、C所对的边分别为a,b,c,asin AsinB+bcos2A=
|
答案
∵asin AsinB+bcos2A=
a2
∴由正弦定理可知sin2AsinB+sinBcos2A=
sinA2
∴sinB(sin2A+cos2A)=sinB=
sinA2
∴
=sinB sinA
=b a 2
选D
△ABC的三个内角A、B、C所对的边分别为a,b,c,asin AsinB+bcos2A=
|
∵asin AsinB+bcos2A=
a2
∴由正弦定理可知sin2AsinB+sinBcos2A=
sinA2
∴sinB(sin2A+cos2A)=sinB=
sinA2
∴
=sinB sinA
=b a 2
选D