问题 解答题

23个不同的正整数的和是4845,问这23个数的最大公约数可能达到的最大值是多少写出你的结论,并说明你的理由.

答案

设23个不同的正整数的最大公约数为d,则,

23个不同的正整数为:da1、da2、…、da23为互不相同正整数,

4845=da1+da2+…+da23=d(a1+a2+…+a23

a1+a2+…+a23最小为1+2+…+23=(23+1)×23÷2=276,

4845=3×5×17×19,

4845的约数中,大于276的最小约数是3×5×19=285,

即:a1+a2+…+a23最小为285,

∴最大公约数d可能达到的最大值=4845÷285=17.

问答题 简答题
单项选择题