问题
解答题
求证:矩形的对角线相等.
答案
已知:四边形ABCD是矩形,AC与BD是对角线,
求证:AC=BD,
证明:∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
又∵BC=CB,
∴△ABC≌△DCB(SAS),
∴AC=BD,
所以矩形的对角线相等.
求证:矩形的对角线相等.
已知:四边形ABCD是矩形,AC与BD是对角线,
求证:AC=BD,
证明:∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
又∵BC=CB,
∴△ABC≌△DCB(SAS),
∴AC=BD,
所以矩形的对角线相等.