问题 解答题
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被圆C截得的弦长为2
2
时,求
(Ⅰ)a的值;
(Ⅱ)求过点(3,5)并与圆C相切的切线方程.
答案

(Ⅰ)依题意可得圆心C(a,2),半径r=2,

则圆心到直线l:x-y+3=0的距离d=

|a-2+3|
12+(-1)2
=
|a+1|
2

由勾股定理可知d2+(

2
2
2
)2=r2,代入化简得|a+1|=2,

解得a=1或a=-3,

又a>0,所以a=1;

(Ⅱ)由(1)知圆C:(x-1)2+(y-2)2=4,圆心坐标为(1,2),圆的半径r=2

由(3,5)到圆心的距离为

4+9
=
13
>r=2,得到(3,5)在圆外,

∴①当切线方程的斜率存在时,设方程为y-5=k(x-3)

由圆心到切线的距离d=

|-2k+3|
k2+1
=r=2,

化简得:12k=5,可解得k=

5
12

∴切线方程为5x-12y+45=0;

②当过(3,5)斜率不存在直线方程为x=3与圆相切.

由①②可知切线方程为5x-12y+45=0或x=3.

单项选择题
多项选择题