问题
选择题
在正整数范围内,方程组(x,y)=60,(y,z)=90,[z,x]=360,y≤1000有多少组解?其中( )、[]分别表示最大公约数和最小公倍数.
A.3
B.6
C.12
D.24
答案
由题意得,60、90都是y的约数,
∴y=180k(k取正整数),
又∵y≤1000,
则k≤5;
①当k=1时,y=180,
∵(x,y)=60,(y,z)=90,[z,x]=360,
∴可得x=120,z=90,
则(x,z)=(120,90),此时有1组解.
②当k=2时,y=360,
∵(x,y)=60,(y,z)=90,[z,x]=360,
没有符合题意的x和z,此时没有解.
③当k=3时,y=540,
∵(x,y)=60,(y,z)=90,[z,x]=360,
则(x,z)=(120,90),此时有1组解.
④当k=4时,y=720,
∵(x,y)=60,(y,z)=90,
∴可得x=60,z=90,
又∵[z,x]=360,
∴没有符合题意的x和z,此时没有解.
⑤当k=5时,y=900,
∵(x,y)=60,(y,z)=90,
∴可得x=60或120或360,z=90或360,
又∵[z,x]=360,
则(x,z)=(120,90),此时有1组解.
综上可得共有3组解.
故选A.