问题
选择题
已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线(A,B为切点),则四边形PACB面积的最小值( )
|
答案
圆C:x2+y2-2x-2y+1=0 即 (x-1)2+(y-1)2=1,表示以C(1,1)为圆心,以1为半径的圆.
由于四边形PACB面积等于 2×
PA×AC=PA,而 PA=1 2
,PC2-1
故当PC最小时,四边形PACB面积最小.
又PC的最小值等于圆心C到直线l:3x+4y+8=0 的距离d,而d=
=3,|3+4+8| 9+16
故四边形PACB面积的最小的最小值为
=232-1
,2
故选B.