问题 解答题

已知直线l:2mx-y-8m-3=0和圆C:(x-3)2+(y+6)2=25.

(1)证明:不论m取什么实数,直线l与圆C总相交;

(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

答案

(1)证明:∵2mx-y-8m-3=0,

∴(2x-8)m-(y+3)=0,

2x-8=0
y+3=0
,解得
x=4
y=-3

∴直线l恒过(4,-3),

∵点(4,-3)到圆心(3,-6)的距离d=

(4-3)2+(-3+6)2
=
10
<r=5,

故不论m为何实数值,直线l与圆C总相交.

(2)由(1)可知0≤d≤

10
,即d的最大值为
10

根据平面几何知识可知:当圆心到直线l的距离最大时,直线l被圆C截得的线段长度最短.

∴当d=

10
时,

线段(即弦长)的最短长度为

2

25-
10
p2
=2
15
.(9分)

将d=

10
代入①可得m=-
1
6

代入直线l的方程,

得直线被圆C截得最短线段时l的方程为x+3y+5=0.(12分)

单项选择题
问答题