问题
填空题
已知定义在R上的函数y=f(x)满足下 * * 个条件:①对任意的x∈R都有f(x+2)=-f(x);②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2),③f(x+2)的图象关于y轴对称,则f(4.5),f(6.5),f(7)的大小关系是______.
答案
∵对任意的x∈R都有f(x+2)=-f(x),
∴函数是一个周期函数T=4,
∵对于任意的0≤x1<x2≤2,都有f(x1)<f(x2)
∴函数在[0,2]上是一个递增函数,
∵f(x+2)的图象关于y轴对称,
∴f(x)的图象关于x=2对称,
f(4.5)=f(1.5)
f(6.5)=f(2.5)=f(2)
f(7)=f(3)=f(1)
∵函数在[0,2]上是一个递增函数,
∴f(7)<f(4.5)<f(6.5)
故答案为:f(7)<f(4.5)<f(6.5).